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ABSTRACT

o of
lle-Thr-Gly <———\N)LNJN),/II—> lle-aflo-Thr-Gly
—
> Ph 2

trans-Aziridine-2-carboxylic acid derivatives are useful intermediates for the synthesis of threonine or allo-threonine through ring expansion
and Sy2 displacement, respectively. We describe here the preparation of the lle-allo-Thr-Gly 11 fragment of Lysobactin via the aziridine 9

intermediate.

Lysobactit 1 was isolated from the fermentation bfso-

interesting presence of the glycia#le-threonine-isoleucine

bactersp. SC13,067 (ATCC 53042) and is a potent agent tripeptide sequence.

against Gram-positive bacteria (in vitro). Its efficacy in vivo
was compared with that of the antibiotic Vancomycin.
Vancomycin and related antibiotics inhibit bacterial cell wall
biosynthesis by specific binding t-alanylp-alanine cell
wall precursors. The structure df (Figure 1) shows the
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Figure 1. Lysobactin.
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We report here our progress toward the synthesis of this
tripeptide fragment containingllo-threonine with the as-
signed (5,39 configuration. Our project starts from the idea
that the s-hydroxy-a-amino acids inl come with the
aziridine acyl derivative precursor. These activated aziridine
compounds give aziridine ring opening with an inversion of
configuration by a proper nucleophilédn the other hand,
the aziridine ring expansion reaction gives the corresponding
oxazoline as a protected form of the amino alcohol com-
pounds. This reaction occurs with retention of configuration
of the starting aziridine derivative stereocenters (Schene 1).

We explored both of these strategies, showing that a
threonine orallo-threonine dipeptide sequence may be
synthesized from a unique starting aziridine simply by
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Scheme 1. Reactivity of Activated Aziridines
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changing the steps of the synthetic sequences. TBe3(R)
aziridine 2 was obtained as the major isomer from a two-
step sequence: 1,4-addition ©Fbenzylhydroxylamine to
the o, f-unsaturated crotonyl derivative followed by cycliza-
tion to the correspondingrans aziriding' through the
intermediate enolate.The stereochemical result of the
reaction was controlled using $6R-1,5-dimethyl-4-

phenylimidazolidin-2-one as a chiral auxiliary. The synthesis
of the isoleucine-threonine derivative is outlined in Scheme ™y

2. The acyl derivative (8,3R)-8 was obtained in 90% yield
by treatment of2 with N-BOC-isoleucine and DCC in
CH,ClI,. After purification by flash chromatography on silica
gel, compound3 was converted to oxazoline $6R)-4in
the presence of BFEt,O. The oxazoline b—Hs coupling

Scheme 2. Synthesis of Dipeptide Derivativesand 7
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constant (3= 5.7 Hz) confirmed théransrelationship’ The
hydrolysis of4 was carried out in THF with 0.1 N HCI, and
this gave the ester (8,3'R)-5in 90% yield. Nucleophilic
intramolecular displacement to the amideS2R)-6 was
performed in toluene at reflux for 3 h. Tl@-acetate’ was
easily prepared by treatment ©fvith acetic anhydride and

pyridine in CHCIl, (Scheme 2§.

This sequence leads to the preparation of an lle-Thr

derivative. To obtain lle-allo-Thr, an & aziridine ring
opening is required. However, attempts to promote the ring
opening of aziridined by treatment with CHCOOH failed

to give 4 preferentially. This demonstrates that the presence
of the chiral auxiliary strongly favors the aziridine to
oxazoline ring expansioh.For this reason the correct
sequence containing &3)-allo-threonine was obtained by

removing the imidazolidinone chiral auxiliary at an earlier
stage of the sequence, as outlined in Scheme 3.

Scheme 3. Synthesis of Derivativ®
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The introduction of a masked glycine was achieved by
treatment of2 with neat allylaminé&® at room temperature
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Hz); 5.95 (dd, 1HJ = 2.1, 8.7 Hz); 6.67 (d, 1H]) = 8.7 Hz); 7.13—7.37
(m, 5H).23C NMR (CDCk) 6 11.4, 15.1, 15.5, 19.5, 24.8, 28.2, 28.3, 37.3,
54.2,55.7,59.2,59.4, 68.5, 79.8, 126.8, 128.3, 128.7, 136.1, 155.2, 169.9,

171.4, 171.5. [od%> = —45.0 (c= 1, CHCE).
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for 4 h to give the allylamido derivative &,3R)-8in 95%

yield. The coupling of compoun8 with N-BOC-isoleucine Scheme 4. Synthesis of Tripeptida1

was performed in CECl,, and (&,3R)-9was obtained in

90% vyield. O OAc
Ring opening of the (8,3R)-aziridine derivativ® was BOCHN_ " NN

performed in CHCOOH as reported in the literatuteThis o o) H Hn_o

reaction proceeded through ag23nechanism, and ttedlo- S JKT> CH3COOH \E/\

threonine acetate derivative (2S,3S)wldk isolated in 95% \/\m 959, BOCHN" ™

yield. Finally 10 was treated with KMn@CH;COOH!! in a ° 10 :

remarkably clean reaction to give §3S)-11, which was 9 KMnO

converted to its methyl ester derivatii2 with CH,N, 95% CH3050H

(Scheme 4). ThéH NMR and*C NMR of both compounds
are consistent with their assigned structufes.

In conclusion, our synthetic protocol which starts from O OAc CHoN, O OAc
the aziridine enabled us to prepaaflo-Thr- and Thr- O N7 -— OYN >
ome ! HN_oO 95% oH " HN_o
(9) It is generally assumed that the ring expansiorNedcylaziridine
occurs via a carbocationic-like TS (ref 3a) or a carbocationic intermediate " BOCHN"
(ref 3b) and is favored by the presence of Lewis acids. BOCHN"
Q Me O ¥ ) -
Me
kN)\‘R HQ‘Q R \/SW/R 12 1
o Vho f N o |y
3 3 S BF S
\N\)_L/N/{\O ' ' S N "
S %y l_ B, S %y containing sequences in a few steps and in a high yield. Since

five hydroxyamino acids in the Lysobactin backbone are
Our semiempirical calculations suggest that the presence of the imidazolidin- present in thesynor anti configuration®® our results show a

2-one substituent could be responsible for the accelerated expansion rateyagsonable and encouraging route toward the total synthesis

Indeed, the reactant adopts a preferential conformation in which the _

endocyclic carbonylic oxygen points toward the aziridine’,Cus of the macrocyclic lactone.

stabilizing the incipient positive charge. This model is in accord with our

previous experimental observations that aziridine 2-ester ring expansion is ;
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